
www.manaraa.com

Data Management for XML: Research Directions

Jennifer Widom
Stanford University

widom@db.stanford.edu, http://www-db.stanford.edu/~widom

Abstract

This paper is a July 1999 snapshot of a “whitepaper” that I’vebeen working on. The purpose of the
whitepaper, which I initially drafted in April 1999, was to formulate and put into prose my thoughts on
the research opportunities XML brings to the general area ofdata management. It is important to know
that this paper is not a survey. It offers my personal opinions and thoughts on Data Management for
XML, fully incorporating my biases and ignorances. Relatedwork is not discussed, and references are
not provided with the exception of a handful of URLs. Furthermore, I expect the whitepaper to evolve
over time; please see [1] for the latest version.

1 The XML Revolution

XML—theeXtensible Markup Language—has recently emerged as a new standard for data representation and
exchange on the Internet [2]. The basic ideas underlying XMLare very simple: tags on data elements identify
the meaning of the data, rather than, e.g., specifying how the data should be formatted (as in HTML), and re-
lationships between data elements are provided via simple nesting and references. Yet the potential impact is
significant: Web servers and applications encoding their data in XML can quickly make their information avail-
able in a simple and usable format, and such information providers can interoperate easily. Information content
is separated from information rendering, making it easy to provide multiple views of the same data. (XML data
files can be rendered via specifications inXSL, theeXtensible Stylesheet Language[3].) Laborious, error-prone,
and unmaintainable “screen-scraping” as a method for extracting useful data from HTML Web pages is greatly
reduced, since XML is designed for data representation—XMLis simple, easily parsed, and self-describing.

As an example, consider the following HTML fragment (extracted from my own publications Web page [4]
without modification), describing two publications:

<UL>
<LI>
R. Goldman, J. McHugh, and J. Widom.
<A href="ftp://db.stanford.edu/pub/papers/xml.ps">
From Semistructured Data to XML: Migrating the Lore Data Model
and Query Language
</A>.
Proceedings of the 2nd International Workshop on the Web and Databases

Copyright 1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1



www.manaraa.com

(WebDB ’99), pages 25-30, Philadelphia, Pennsylvania, June 1999.
<LI>
T. Lahiri, S. Abiteboul, and J. Widom.
<A href="ftp://db.stanford.edu/pub/papers/ozone.ps">
Ozone: Integrating Structured and Semistructured Data
</A>.
Technical Report, Stanford Database Group, October 1998.
</UL>

One way of encoding the same information in XML is:

<Publication URL="ftp://db.stanford.edu/pub/papers/xml.ps" Authors="RG JM JW">
<Title>From Semistructured Data to XML: Migrating the Lore Data Model

and Query Language</Title>
<Published>Proceedings of the 2nd International Workshop on the Web

and Databases (WebDB ’99)</Published>
<Pages>25-30</Pages>
<Location>

<City>Philadelphia</City>
<State>Pennsylvania</State>

</Location>
<Date>

<Month>June</Month>
<Year>1999</Year>

</Date>
</Publication>
<Publication URL="ftp://db.stanford.edu/pub/papers/ozone.ps" Authors="TL SA JW">

<Title>Ozone: Integrating Structured and Semistructured Data</Title>
<Published>Technical Report</Published>
<Institution>Stanford University Database Group</Institution>
<Date>

<Month>October</Month>
<Year>1998</Year>

</Date>
</Publication>
<Author ID="SA">S. Abiteboul</Author>
<Author ID="RG">R. Goldman</Author>
<Author ID="TL">T. Lahiri</Author>
<Author ID="JM">J. McHugh</Author>
<Author ID="JW">J. Widom</Author>

Clearly the XML encoding, although more verbose, provides the information in a far more convenient and usable
format from a data management perspective. Furthermore, the XML data can be transformed and rendered as
desired using simple XSL specifications.

There is great excitement in industry over XML. True believers think XML will radically change the face
and uses of the Web. Leading software vendors are committed to XML and are quickly moving towards using
XML internally as well as creating XML-oriented tools and products. XML technology startups are proliferating.
Commercial enterprises and scientists alike are generating their data in XML, and we expect that the amount and
variety of data made available in XML form, and the tools to accompany that data, will grow rapidly.

2



www.manaraa.com

2 Commercial Perspective (A Disclaimer)

The remainder of this paper is written from a true research standpoint. For better or worse, I’ve ignored or cast
aside certain important considerations from a commercial perspective. For example:� Although it is clear that XML will have a significant impact onInternet information management, it is still

unclear precisely how XML will be used. Will XML be used primarily as a dataexchangeformat, or will it
also be used as a datastorageformat? Will most XML documents be governed byDocument Type Definitions
(DTDs) or will many be without? For that matter, how important willthe concept of an XML “document”
be? It may be years before the answers emerge. Nevertheless,we researchers can enjoy the freedom of attack-
ing problems associated with any or all of the possible outcomes. As illustrated in the next section, I believe
database-style technology applied to XML can play an important role in all of them.� Despite all of the hype, including my own, XML will not be the proverbial magic bullet that solves all of the
problems associated with application interoperation and data integration on the Internet. Some applications,
even if they encode their data in XML, may not wish to expose itthat way, so “screen-scraping” will not dis-
appear entirely. (In fact, some information providers purposely make their current HTML pages difficult to
parse, in order to protect the information from being copied—these providers certainly won’t expose their data
in XML even if they store it that way.) Furthermore, there is the very significant issue of ensuring that appli-
cations use commonly-understood tags for data, or at least have practical methods and tools for detecting and
resolving discrepancies among tags. Fortunately, in many cases Web information providerswill have a vested
interest in cooperating with each other, so we anticipate that such methods and tools, as well as agreed-upon,
domain-specific DTDs, will proliferate.� This paper is based on the core XML specification. It does not consider the various proposed mechanisms for
inter-document references (e.g.,XLink, XPointer), although it’s my feeling that the differences among these
mechanisms will have little significant impact on database-oriented XML research. The various proposed ex-
tensions or alternatives to DTDs for richer schema definitions (e.g.,DCDs, XML-Schema, and others) also are
not discussed here. These schemes obviously can have an impact on database-oriented XML research (and
database researchers probably should try to have an impact on these schemes), but the field is too crowded at
this point to choose a particular winner. Also, I believe that most of the technical issues discussed below with
respect to DTDs are equally valid for richer schema definition languages.

3 Database Research Opportunities

In addition to the promise of greatly facilitating information integration on the Internet, as discussed in Section 1,
another exciting promise of XML is that it “turns the Web intoa database.” Migrating Web information to XML
is a significant first step in enabling efficient execution of ad-hoc, expressive queries over large amounts of Web
data—a core feature of traditional database management systems. Consider the current state of query processing
over information on the Web:� Data embedded within HTML pages needs to be preprocessed by special-purpose, page-specific parsers before

meaningful queries can be posed, a limited technology at best. Otherwise, ad-hoc queries are limited to simple
keyword-based searches (as provided by search engines, forexample) that understand documents as streams
of words and little more.� Data stored within traditional database management systems generally is accessed on the Web only through
simple and rigid forms-based interfaces.

Most of us are familiar with Web sites that contain vast databases of useful information, but whose query and
search facilities are surprisingly primitive. As a specificquery scenario, consider a large collection of publication
information such as that in the examples of Section 1, drawn from one or more data sources.

3



www.manaraa.com

� If the information is provided in HTML, we could attempt to parse out the relevant data elements, provided
the formats don’t change and our parsers are amenable to the inevitable inconsistencies and omissions across
publications. Otherwise, we are limited to keyword-based searches.� If the information is provided via a traditional DBMS, then simple, fixed, parameterized queries are the usual
mode of external access. Query capabilities aside, much of the information made available on the Web is not
well-structured (even our tiny examples in Section 1 illustrate some of the problems), and thus the data may
not be amenable to using a traditional DBMS.� Suppose the information is provided in XML, and let us be optimistic and assume that if multiple data sources
are involved, the XML encodings are compatible (see Section2). In this case, the structure and “meaning”
of the data (at least to the extent that meaning can be embodied in tags), as well as the data itself, is readily
parsable and available, setting the stage for powerful queries. Some relatively simple examples of such queries
are:

– Find all authors with two or more SIGMOD publications in the same year.

– Find the earliest publication with “semistructured data” in its title.

Encoding information in XML is a first step to enabling expressive, database-like queries over the informa-
tion, but many query processing issues still need to be addressed, as discussed in the bullets below. Furthermore,
the tendency to mix traditional data elements with free textin XML, the ability to encode data ranging from fully
structured to highly unstructured, and the inherent dichotomy between documents and databases, poses new chal-
lenges in combining techniques from database systems and information retrieval.

A few sample research topics for the database community follow, with a primary focus on database-like treat-
ment of XML (as opposed to focusing on XML-based informationintegration, clearly a very important topic as
well). There has been preliminary work in several of these areas, while some topics are still virtually untouched.� Since XML is a document format and not a data model, we need theability to map XML-encoded information

into a true data model.� More generally, we need to resolve the various conflicts thatarise when we try to mix the concepts of docu-
ments and databases. For example, while some applications may wish to view a large set of XML documents
as exactly that—a set of documents—other applications may prefer to think of each document as a database
“load file,” where all document contents are merged into a single large database. In fact, we may wish to si-
multaneously view a body of XML information in both ways.� Theoretical results and practical techniques for designing XML databases are needed, to the extent possible
within the relatively free-form nature of XML. For example,when should attributes be used and when should
subelements be used? Is a one-to-one relationship best represented using element nesting or IDREFs? Is there
an analogy to relational functional dependencies in the XMLworld? There are a number of questions of this
nature that arise when translating a conceptual model of a database into an XML encoding.� The relationship between XML’s optional Document Type Definitions (DTDs) and traditional database schemas
needs to be understood and exploited.� An appropriate query language (or set of languages) for XML needs to be defined. This task is made partic-
ularly difficult because the true requirements for XML querylanguages will not be known until a significant
number of data-intensive XML applications are built. Here too, there is an inherent conflict between the doc-
ument and database view of XML-encoded information, and thus an opportunity to merge formerly separate
technologies.� Database updates in an XML setting must be considered, with afocus on environments that are heavily read-
oriented.� Efficient physical layout and indexing mechanisms are required for large stores of XML data. At the same time,
we should be able to provide the illusion of an XML data store when the data actually is stored elsewhere (such
as in a traditional DBMS), and make the two modes work together.

4



www.manaraa.com

� All facets of traditional query processing must be considered, from semantic checking (when appropriate)
through plan generation and optimization to efficient access methods. We also need to consider non-traditional
query processing that can meaningfully and efficiently handle a mixture of data elements (both structured and
semistructured) and free text.� Viewmechanisms are important in conventional databases, and are likely to be important in XML databases as
well. Virtual views, involving query rewriting techniques, are likely to be quite a bit more complex in XML
than in the relational world. Similarly, the incremental maintenance problem for materialized views is likely
to pose new problems when we consider XML data. Even the view definition language itself needs to be con-
sidered carefully. At one extreme,XSL [3] could be used as a view definition language, posing especially
challenging view management problems due to its expressivepower and procedural nature.� Everything needs to scale to Web proportions (!).

4 The Lore Project at Stanford

TheLore project at Stanford [5] began around 1995, with the premise of building a complete database manage-
ment system forsemistructured data. We defined semistructured data as data that may be irregularor incomplete,
and whose structure may change rapidly and unpredictably. Information integrated from heterogeneous sources,
structured text, and “screen-scraped” HTML pages were our original motivating sources of data for Lore.

By 1998 we had largely achieved our goal. We had built a complete, robust (as university prototypes go),
multi-user database system based on a fairly traditional DBMS architecture, with a number of extra features such
asdynamic structural summaries(DataGuides), keyword and proximity search, and anexternal data manager.
Our schema-less, self-describing data model, called theObject Exchange Model(OEM), was essentially a di-
rected labeled graph—or equivalently, nested tagged data with references. Our query language,Lorel, was based
on OQL, with modifications and extensions suitable for semistructured data. Many aspects of building a DBMS
top-to-bottom needed to be revisited in the context of semistructured data. We published papers, distributed our
system, and continued to work on a variety of issues.

When XML came along, the similarity between OEM and XML was striking, and exciting. In late 1998 and
early 1999 we migrated Lore to be based on a true XML-orienteddata model and modified our query language
accordingly. (See our short paper [6] on the topic, which also happens to be one of the publication examples in
Section 1.) A number of subtleties were involved in both design and implementation, and the first public release
of the XML version of Lore was made in May 1999.

While some aspects of Lore could still benefit from refitting and tuning for XML, by and large we have one
of the only complete database systems designed specificallyfor storing and querying “native” XML. We believe
that Lore provides an ideal testbed for further research in this area.

5 Personal Research Agenda

As outlined in Section 3, there is a broad range of research issues to be explored in XML data management.
Here I list a number of more specific topics that are on my personal research agenda. In some cases the topics
are obvious follow-ons to previous work in Lore, in other cases the topics are just plain interesting.

5.1 Storage and Indexing

Lore uses a simple storage manager that parses XML into the basic units of elements, attributes, and text strings,
and stores them using a straightforward depth-first clustering heuristic. We can build a wide variety of indexes
on Lore databases. The types of indexes we support were designed for Lore’s original data model, OEM, but

5



www.manaraa.com

with minor changes the indexes also work for XML. There are several further avenues to pursue in storage and
indexing:� Different clustering schemes for storing XML data, preferably customizable for different databases and appli-

cations.� New index types designed specifically for XML data, taking into account element ordering, new kinds of com-
parison operations, and a few other subtle differences between XML and our original data model.� More radically, we plan to explore using XML documents themselves as a storage medium in Lore, augmented
with auxiliary structures such as: (1) an indexing scheme for quickly finding certain elements, attributes, and
more complex structural patterns in the document; and/or (2) a data store containing some of the XML data
parsed to some level (and possibly created “lazily”, i.e., on an as-needed basis), with a mapping maintained
between the database and documents.� Depending on how applications tend to encode their data in XML, we may find that we can take data that is
primarily encoded as tree structures and convert it to a moregraph-structured representation, e.g., by merg-
ing identical text values or entire subelements, then inserting appropriate IDREFs. It will be interesting to see
whether any significant compression is achieved, but more importantly to observe the effect on query process-
ing and even query semantics.� Another opportunity for compressing XML data is to exploit regularity in the structure, in the extreme case
storing the XML data essentially as relations. (See also Sections 5.5 and 5.6 below.)

5.2 DataGuides and DTDs

Lore builds and dynamically maintains aDataGuidefor every database, which is a summary of the current struc-
ture of the database and serves some of the functions a schemaserves in a traditional DBMS. Since an XML DTD
(Document Type Definition) is a set of grammar rules that restrict the form of an XML document, there is a close
relationship between DataGuides and DTDs. Note that a DTD acts more as a traditional schema, since it restricts
the allowable XML data, while a DataGuide infers rather thanimposes structure.

Currently we can store DTDs in Lore databases, and we can use aDTD to build an “approximate” DataGuide.
There can be a significant performance advantage to buildingDataGuides from DTDs instead of from the database
itself: in some cases, particularly in highly connected andcyclic databases, building a DataGuide can be pro-
hibitively expensive. However, the DTD does not capture thestructure of a database as accurately as a DataGuide:
attributes and elements included in a DTD need not actually appear in the database, and DTDs cannot specify re-
strictions on the types of elements referenced by IDREF attributes. Furthermore, the lack of accuracy in DTDs
inhibits other ways we use DataGuides in Lore, such as storing statistics and encoding path indexes.

There are several avenues to pursue in the general area of DTDs, DataGuides, and their relationship, listed
here in no particular order:� Validating parsers can check that an XML document conforms to its DTD, and we can build the same function-

ality into an XML database system. However, there are some interesting related problems: Can we perform
validation incrementally as portions of an XML database areupdated? Can we perform validation on the up-
date statements themselves, instead of on the database? When we pose a query to an XML database, can we
infer a DTD for the query result?� Currently we do not encode subelement ordering in our DataGuides (even the DataGuides we build from DTDs).
If subelements of a given element type always appear in the same order, it would be nice to reflect that order-
ing in the DataGuide. However, if subelements do not always appear in the same order, we probably do not
want to expand the size of the DataGuide to encode that fact. One possibility is to order subelements in the
DataGuide based on a “most frequent” ordering from the database.� We would like to further investigate the performance and functionality tradeoffs between using (exact) DataGuides
inferred from the database versus (possibly inexact) DTDs.

6



www.manaraa.com

� There may be scenarios where DTDs are available for specific portions of an XML database, but not for all of
the data. In that case, for maximum flexibility we might want to build a DataGuide for the portion without a
DTD, and link to DTDs in the appropriate places.� Our DataGuide serves as the basis of a convenient interface by which users can browse the current structure of
the database and even formulate queries “by example.” Independent of XML, for some time we’ve had the idea
of trying to blur the distinction between browsing structure (the DataGuide) and data (the database). We en-
vision interactions where predicates are specified within the DataGuide, which produces a smaller DataGuide
based on the constrained database, through which additional predicates may be specified, and so on. When the
constrained database becomes sufficiently small, we shouldautomatically begin browsing the data along with
the structure.� Along similar lines, when browsing the structure of a database through the DataGuide, we might want to spec-
ify certain updates that should propagate to the database. For example, we might “cleanse” the data by mod-
ifying or merging tags, or by identifying portions of the database that are uninteresting or erroneous and can
be deleted.

5.3 Databases and Information Retrieval

The typical paradigm for querying document collections is to use information retrieval style searches based on
keyword matching and word position within documents. By contrast, the typical paradigm for querying databases
is through an expressive, declarative query language (suchas SQL) that relies on database structure.

Lore implements the declarative OQL-based query languageLorel, along with akeyword and proximity search
feature. Keyword search in Lore is straightforward: we find all objects (elements or attributes) whose tag, name,
or value contains the specified keyword. Proximity search ismore interesting. In a document collection, a typical
“X near Y” search might return all documents containing bothX andY, ranked by how nearX andY are to each
other within the document. There are two problems with this approach:

1. If the documents are structured, as XML documents are, then nearness based on the linear encoding of
the document, rather than on the document’s structure, may not work well. For example, in our sample
XML data of Section 1, the year of a publication is closer in a document sense to the title of the following
publication in the list than it is to its own title, and authornames are nowhere near the relevant references.

2. Document divisions may be artificial: items that are near each other semantically may not even appear in
the same document, and the concept of separate documents maybe lost when loading XML into a database.

In Lore we solve both of these problems by encoding all XML structure in the database, and by measuring prox-
imity based on (weighted) path length in the database graph.

We’re excited about how the techniques we’ve developed for proximity search in Lore might be used to im-
prove searching over XML on the Web. Still, there is more workto be done on proximity search in Lore, as well
as generally integrating database and information retrieval concepts:� While we’ve developed some novel indexing structures and algorithms designed to make Lore’s proximity

search feature scale to very large databases, scaling to Webproportions is still a significant leap away.� In Lore, keyword/proximity searches versus Lorel queries so far have been completely separate. We would
like to integrate searching into Lorel queries, which (among issues) requires us to combine standard set-based
query results with ranked results. A related idea is to use proximity search “under the covers” as a pre-filtering
step during query processing.� Our experience so far has been that Lore’s proximity search feature yields intuitive and useful results, and that
keyword and proximity search in general are a good way for casual users to interact with Lore databases. One
feature that’s missing, however, is the ability to explain why objects rank where they do in proximity search

7



www.manaraa.com

results. Identifying and saving the relevant “near” objects is both a technical issue during search processing
(primarily an efficiency problem), as well as a user-interface issue of presenting the explanations in an intuitive
fashion.� We have begun investigating the related problem ofsimilarity searchin Lore. While proximity search is use-
ful for identifying objects that are related based on closeness in a graph sense (due to shared subobjects, for
example), it doesn’t identify objects that are similar structurally but distant within the database structure. In
similarity search, given a set of XML objects (elements and/or attributes), we want to rank them based on how
similar they are to one or more other objects. Similarity of objects might be based on values, substructure (chil-
dren, outgoing IDREFs), and/or super-structure (parents,incoming IDREFs). Needless to say, coming up with
a workable definition of similarity measure, much less developing efficient evaluation algorithms, is a signifi-
cant challenge. In addition, the issues of scalability, integration with the Lorel query language, and providing
an “explain” feature to the user, described in the previous three bullets for proximity search, are relevant here
as well.

5.4 Other Database Features

Three useful features provided by most traditional database management systems areviews, constraints, andtrig-
gers. We have done some initial work on materialized views in Lore, and we also have done some work onchange
management—tracking, representing, and querying changes in semistructured databases. However, full view
support for XML, including both virtual and materialized views, is a largely unexplored area. The same is true
of constraints; in fact, even the notion of keys has not been introduced into XML or semistructured database work
in a significant way, as far as I know. With respect to triggers(or active database capabilities in the Web/XML
context in general), it is important to consider the relationship with recent developments in publish-subscribe
technology.

5.5 Mixing Semistructured and Structured Data

A frequent and valid criticism of work in the area of semistructured data management is thatall data is assumed
to be semistructured in nature, i.e., (as defined earlier) the data may be irregular or incomplete, and its structure
may change rapidly and unpredictably. As a result, when structure does happen to be present and stable in a
semistructured database, the structure is not exploited tothe advantage of the user or the system. Lore is certainly
guilty on this count.

There are two issues to address: (1) finding the structure; (2) exploiting the structure. There has been some
work on issue (1), although with XML the presence of a DTD certainly alleviates this problem to a great extent.
The second issue—how to exploit structure when it is present, but not require structure for effective or efficient
processing—is largely yet to be addressed. Structure mightbe exploited at all levels of the system: object layout,
indexing, query processing, query formulation, etc. We have done some preliminary work in this general area by
“marrying” the ODMG and OEM data models (and corresponding query languages) in a system calledOzone,
but clearly there is more to be explored.

5.6 XML in/on a Traditional DBMS

We decided to build Lore from scratch so that we could exploreevery nook and cranny of building a complete
DBMS for semistructured data (now XML). In retrospect, we probably should have used somebody else’s low-
level page or object storage manager, since we haven’t done much work at that level, and writing a transaction
manager was a pain. More generally, it would be interesting to explore just how much of an XML-savvy DBMS
actually needs to be built from scratch, and how much can be lifted from existing DBMSs. (For example, at the
other extreme, we and others have considered schemes for translating semistructured XML data to relations and

8



www.manaraa.com

translating Lorel queries to SQL accordingly.) While I expect there are some interesting research problems to
explore all along the spectrum, it’s also a certainty that database companies are working fast and furious to figure
out how XML data and queries can fit into their systems.

5.7 Performance Evaluation

We have performed some preliminary evaluations of Lore’s performance, particularly in the context of query
optimization. However, we have had great difficulty figuringout what an appropriate benchmark for XML data
should look like, in terms of the data itself (e.g., regular versus irregular, tree versus DAG versus general graph)
as well as the type of queries and mix of queries and updates. So far we have not found any large, semistructured
XML data sets to work with other than those we have constructed ourselves, although this dearth of interesting
XML data surely will change. Meanwhile, flexible synthetic data generation for graph-structured data is a hard
and interesting problem.

6 More Information and Related Work

Information related to many of the topics discussed here, ranging from how to download Lore to research papers
to links to commercial product sites, can be found by starting at the Lore project’s home page [5]. There’s also
a lot of good stuff to be found from the W3C’s QL ’98 Web site [7]. I have not attempted to cover the very
interesting and fast-growing body of great work from other researchers in XML and databases—I hope I haven’t
stepped on anyone’s toes.

Alon Levy has created an interesting follow-up document to this one,More on Data Management for XML[8],
covering two important topics omitted here: the role of XML in data integration, and new measures of complexity
and scalability for XML query processing.

Acknowledgements

Many people have had a direct influence on my thinking and workon XML, including but not limited to (in
alphabetical order): Serge Abiteboul, Adam Bosworth, Roy Goldman, Jason McHugh, Michael Rys, and Frank
Tompa. For comments on this paper, thanks go to Roy Goldman, Alon Levy, Jason McHugh, and Dan Suciu.

Funding for my research in semistructured data has come in the past from DARPA and the Air Force Rome
Laboratories, and currently is supported by NASA and by the National Science Foundation under grant IIS-
9811947.

References

[1] http://www-db.stanford.edu/~widom/xml-whitepaper.html
[2] http://www.w3.org/XML
[3] http://www.w3.org/TR/WD-xsl
[4] http://www-db.stanford.edu/~widom/pubs.html
[5] http://www-db.stanford.edu/lore
[6] ftp://db.stanford.edu/pub/papers/xml.ps
[7] http://www.w3.org/TandS/QL/QL98/
[8] http://www.cs.washington.edu/homes/alon/widom-response.html

9


